Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.392
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732012

ABSTRACT

Neuroblastoma (NB) is the most commonly diagnosed extracranial solid tumor in children, accounting for 15% of all childhood cancer deaths. Although the 5-year survival rate of patients with a high-risk disease has increased in recent decades, NB remains a challenge in pediatric oncology, and the identification of novel potential therapeutic targets and agents is an urgent clinical need. The RNA-binding protein LIN28B has been identified as an oncogene in NB and is associated with a poor prognosis. Given that LIN28B acts by negatively regulating the biogenesis of the tumor suppressor let-7 miRNAs, we reasoned that selective interference with the LIN28B/let-7 miRNA interaction would increase let-7 miRNA levels, ultimately leading to reduced NB aggressiveness. Here, we selected (-)-epigallocatechin 3-gallate (EGCG) out of 4959 molecules screened as the molecule with the best inhibitory activity on LIN28B/let-7 miRNA interaction and showed that treatment with PLC/PLGA-PEG nanoparticles containing EGCG (EGCG-NPs) led to an increase in mature let-7 miRNAs and a consequent inhibition of NB cell growth. In addition, EGCG-NP pretreatment reduced the tumorigenic potential of NB cells in vivo. These experiments suggest that the LIN28B/let-7 miRNA axis is a good therapeutic target in NB and that EGCG, which can interfere with this interaction, deserves further preclinical evaluation.


Subject(s)
Catechin , MicroRNAs , Neuroblastoma , RNA-Binding Proteins , Catechin/analogs & derivatives , Catechin/pharmacology , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Neuroblastoma/drug therapy , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Animals , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Mice, Nude
2.
Food Res Int ; 186: 114365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729700

ABSTRACT

This study aimed to investigate the interaction, structure, antioxidant, and emulsification properties of quinoa protein hydrolysate (QPH) complexes formed with (-)-epigallocatechin gallate (EGCG) at pH 3.0 and 7.0. Additionally, the effect of pH conditions and EGCG complexation on protein hydrolysate-lipid co-oxidation in QPH emulsions was explored. The results indicated that QPH primarily interacted with EGCG through hydrophobic interactions and hydrogen bonds. This interaction led to alterations in the secondary structure of QPH, as well as a decrease in surface hydrophobicity and free SH content. Notably, the binding affinity between QPH and EGCG was observed to be higher at pH 7.0 compared to pH 3.0. Consequently, QPH-EGCG complexes exhibited more significant enhancement in antioxidant and emulsification properties at pH 7.0 than pH 3.0. The pH level also influenced the droplet size, ζ-potential, and interfacial composition of emulsions formed by QPH and QPH-EGCG complexes. Compared to QPH stabilized emulsions, QPH-EGCG stabilized emulsions were more capable of mitigating destabilization during storage and displayed fewer lipid oxidation products, carbonyl generation, and sulfhydryl groups and fluorescence loss, which implied better oxidative stability of the emulsions. Furthermore, the QPH-EGCG complexes formed at pH 7.0 exhibited better inhibition of protein hydrolysate-lipid co-oxidation. Overall, these findings provide valuable insights into the potential application of QPH and its complexes with EGCG in food processing systems.


Subject(s)
Antioxidants , Catechin , Chenopodium quinoa , Emulsions , Hydrophobic and Hydrophilic Interactions , Oxidation-Reduction , Protein Hydrolysates , Chenopodium quinoa/chemistry , Hydrogen-Ion Concentration , Emulsions/chemistry , Protein Hydrolysates/chemistry , Catechin/chemistry , Catechin/analogs & derivatives , Antioxidants/chemistry , Hydrogen Bonding , Plant Proteins/chemistry , Lipids/chemistry
3.
Sci Rep ; 14(1): 10424, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38710752

ABSTRACT

The storage process has a significant impact on tea quality. Few is known about effect of storage on quality of oolong tea. This study aimed to assess the effect of different storage times on the key chemical components of oolong tea by measuring changes in catechin, free amino acid, and alkaloid content. Variation in the main substances was determined by principal component analysis and heat map analysis. The results revealed notable effects of the storage process on the levels of theanine, epigallocatechin gallate (EGCG), and glutamine. These findings suggest that these compounds could serve as indicators for monitoring changes in oolong tea quality during storage. Additionally, the study observed an increase in the antibacterial ability of tea over time. Correlation analysis indicated that the antibacterial ability against Micrococcus tetragenus and Escherichia coli was influenced by metabolites such as aspartic acid, threonine, serine, gamma-aminobutyric acid, ornithine, alanine, arginine, and EGCG. Overall, this study presents an approach for identifying key metabolites to monitor tea quality effectively with relatively limited data.


Subject(s)
Alkaloids , Amino Acids , Anti-Bacterial Agents , Catechin , Tea , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/chemistry , Catechin/analysis , Tea/chemistry , Amino Acids/analysis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Alkaloids/pharmacology , Alkaloids/analysis , Alkaloids/chemistry , Food Storage/methods , Escherichia coli/drug effects , Camellia sinensis/chemistry
4.
J Oleo Sci ; 73(5): 709-716, 2024.
Article in English | MEDLINE | ID: mdl-38692893

ABSTRACT

Epigallocatechin-3-gallate (EGCG), a polyphenol derived from Green Tea, is one of the sources of natural bioactive compounds which are currently being developed as medicinal ingredients. Besides other biological activities, this natural compound exhibits anti-cariogenic effects. However, EGCG has low physical-chemical stability and poor bioavailability. Thus, the purpose of this study was to develop and characterize lipid-chitosan hybrid nanoparticle with EGCG and to evaluate its in vitro activity against cariogenic planktonic microorganisms. Lipid-chitosan hybrid nanoparticle (LCHNP-EGCG) were prepared by emulsion and sonication method in one step and characterized according to diameter, polydispersity index (PdI), zeta potential (ZP), encapsulation efficiency (EE), mucoadhesion capacity and morphology. Strains of Streptococcus mutans, Streptococcus sobrinus and Lactobacillus casei were treated with LCHNP- EGCG, and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated. LCHNP-EGCG exhibited a size of 217.3 ± 5.1 nm with a low polydispersity index (0.17) and positive zeta potential indicating the presence of chitosan on the lipid nanoparticle surface (+33.7 mV). The LCHNP-EGCG showed a spherical morphology, high stability and a mucoadhesive property due to the presence of chitosan coating. In addition, the EGCG encapsulation efficiency was 96%. A reduction of almost 15-fold in the MIC and MBC against the strains was observed when EGCG was encapsulated in LCHNP, indicating the potential of EGCG encapsulation in lipid-polymer hybrid nanoparticles. Taking the results together, the LCHNP-EGCG could be an interesting system to use in dental care due to their nanometric size, mucoadhesive properties high antibacterial activity against relevant planktonic microorganisms.


Subject(s)
Anti-Bacterial Agents , Catechin , Catechin/analogs & derivatives , Chitosan , Microbial Sensitivity Tests , Nanoparticles , Streptococcus mutans , Catechin/pharmacology , Catechin/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Streptococcus mutans/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Streptococcus sobrinus/drug effects , Lacticaseibacillus casei/drug effects , Lipids/chemistry , Plankton/drug effects , Dental Caries/microbiology , Dental Caries/prevention & control , Drug Carriers/chemistry , Particle Size , Emulsions , Sonication
5.
Colloids Surf B Biointerfaces ; 238: 113917, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615391

ABSTRACT

In this study, the encapsulation and structural characteristics of the self-assembled liposome formed by epigallocatechin gallate (EGCG) and alcohol dehydrogenase (ADH) were studied. According to the results, EGCG significantly increased the catalytic activity of ADH with a 33.33 % activation rate and the liposomes were able to entrap EGCG-ADH with an effectiveness of 88.94 %. The self-assembled monolayers had nanometer-sized particles, and the excellent self-assembled system was demonstrated by the low PDI value and high surface absolute potential. The scanning electron microscope showed that the self-assembled liposome was honeycomb, groove-shaped, and rough. The spectroscopic results showed that EGCG-ADH complex was formed through hydrogen bond, which changed the secondary structure of the liposome, and verified EGCG-ADH liposome system was successfully prepared. In vitro digestion experiments showed that the gastrointestinal tolerance and antioxidant activity of EGCG-ADH liposomes were significantly higher than those of free EGCG-ADH.


Subject(s)
Alcohol Dehydrogenase , Catechin , Liposomes , Liposomes/chemistry , Catechin/chemistry , Catechin/analogs & derivatives , Alcohol Dehydrogenase/chemistry , Alcohol Dehydrogenase/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Particle Size , Hydrogen Bonding
6.
Int J Biol Macromol ; 267(Pt 1): 131474, 2024 May.
Article in English | MEDLINE | ID: mdl-38599429

ABSTRACT

Advanced glycation end products (AGEs) are produced non-enzymatically through the process of glycation. Increased AGEs production has been linked to several diseases including polycystic ovary syndrome (PCOS). PCOS contributes to the development of secondary comorbidities, such as diabetes, cardiovascular complications, infertility, etc. Consequently, research is going on AGEs-inhibiting phytochemicals for their potential to remediate and impede the progression of hyperglycaemia associated disorders. In this study human serum albumin is used as a model protein, as albumin is predominantly present in follicular fluid. This article focusses on the interaction and antiglycating potential of (-)-Epigallocatechin-3-gallate (EGCG) and vitamin D in combination using various techniques. The formation of the HSA-EGCG and HSA-vitamin D complex was confirmed by UV and fluorescence spectroscopy. Thermodynamic analysis verified the spontaneity of reaction, and presence of hydrogen bonds and van der Waals interactions. FRET confirms high possibility of energy transfer. Cumulative antiglycation resulted in almost 60 % prevention in AGEs formation, decreased alterations at lysine and arginine, and reduced protein carbonylation. Secondary and tertiary structural changes were analysed by circular dichroism, Raman spectroscopy and ANS binding assay. Type and size of aggregates were confirmed by Rayleigh and dynamic light scattering, ThT fluorescence, SEM and SDS-PAGE. Effect on cellular redox status, DNA integrity and cytotoxicity was analysed in lymphocytes using dichlorofluorescein (DCFH-DA), DAPI and MTT assay which depicted an enhancement in antioxidant level by cumulative treatment. These findings indicate that EGCG and vitamin D binds strongly to HSA and have antiglycation ability which enhances upon synergism.


Subject(s)
Catechin , Catechin/analogs & derivatives , Cholecalciferol , Glycation End Products, Advanced , Protein Binding , Serum Albumin, Human , Catechin/pharmacology , Catechin/chemistry , Catechin/metabolism , Humans , Glycation End Products, Advanced/metabolism , Cholecalciferol/pharmacology , Cholecalciferol/metabolism , Cholecalciferol/chemistry , Serum Albumin, Human/metabolism , Serum Albumin, Human/chemistry , Molecular Docking Simulation , Thermodynamics , Computer Simulation
7.
Food Chem ; 449: 139166, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38604025

ABSTRACT

Apostichopus japonicus (A. japonicus) has rich nutritional value and is an important economic crop. Due to its rich endogenous enzyme system, fresh A. japonicus is prone to autolysis during market circulation and storage, resulting in economic losses. In order to alleviate this phenomenon, we investigated the effect of polyphenol oxidase (PPO) mediated (-)-epigallocatechin gallate (EGCG) on the activity and structure of endogenous cathepsin series protein (CEP) from A. japonicus. Research on cathepsin activity showed that PPO mediated EGCG could significantly reduce enzyme activity, resulting in a decrease in enzymatic reaction rate. SDS-PAGE and scanning electron microscopy results showed that PPO mediates EGCG could induce CEP aggregation to form protein aggregates. Various spectral results indicated that EGCG caused changes in the structure of CEP. Meanwhile, the conjugates formed by PPO mediated EGCG had lower thermal stability. In conclusion, PPO mediated EGCG was an effective method to inhibit the endogenous enzyme activity.


Subject(s)
Catechin , Catechin/analogs & derivatives , Catechol Oxidase , Cathepsins , Stichopus , Catechin/chemistry , Catechin/pharmacology , Catechol Oxidase/metabolism , Catechol Oxidase/chemistry , Animals , Stichopus/enzymology , Stichopus/chemistry , Cathepsins/metabolism , Cathepsins/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Stability , Kinetics
8.
Food Chem ; 449: 139310, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38608612

ABSTRACT

This study investigated the effects of the conjugate reaction sequences of whey protein concentrate (WPC), epigallocatechin gallate (EGCG) and dextran (DEX) on the structure and emulsion properties of conjugates and the bioaccessibility of astaxanthin (AST). Two types of ternary covalent complexes were synthesised using WPC, EGCG and DEX, which were regarded as emulsifiers of AST nanoemulsions. Results indicated that the WPC-DEX-EGCG conjugate (referred to as 'con') exhibits a darker SDS-PAGE dispersion band and higher contents of α-helix (6%), ß-angle (24%) and random coil (32%), resulting in a greater degree of unfolding structure and fluorescence quenching. These findings suggested WPC-DEX-EGCG con had the potential to exhibit better emulsification properties than WPC-EGCG-DEX con. AST encapsulation efficiency (76.22%) and bioavailability (31.89%) also demonstrated the superior performance of the WPC-DEX-EGCG con emulsifier in nanoemulsion delivery systems. These findings indicate that altering reaction sequences changes protein conformation, enhancing the emulsification properties and bioavailability of AST.


Subject(s)
Biological Availability , Catechin/analogs & derivatives , Emulsifying Agents , Emulsions , Whey Proteins , Xanthophylls , Xanthophylls/chemistry , Emulsions/chemistry , Emulsifying Agents/chemistry , Whey Proteins/chemistry , Animals , Catechin/chemistry , Dextrans/chemistry , Male , Rats , Rats, Sprague-Dawley
9.
Int Immunopharmacol ; 133: 112069, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38643710

ABSTRACT

Epigallocatechin-3-gallate (EGCG) is an important tea polyphenol with anti-tumor potential. Our previous studies revealed that EGCG was a promising immune checkpoint inhibitor (ICI) as it could downregulate expression of programmed cell death 1 ligand 1 (PD-L1) in tumor cells, thereby resulting tumor killing effect. In particular, EGCG can effectively avoid the inflammatory storm caused by anti-tumor therapy, which is a healthy green capacity absent from many ICIs. However, the relationship between EGCG and programmed cell death 1 (PD-1) of T cells remains unclear. In this work, we explored the effect of EGCG on T cells and found that EGCG suppressed PD-1 via inhibiting NF-κB phosphorylation and nuclear translocation. Furtherly, the capability of EGCG was confirmed in tumor-bearing mice to inhibit PD-1 expression in T cells and enhance apoptosis in tumor cells. These results implied that EGCG could inhibit the expression of PD-1 in T cells, thereby promoting anti-tumor effects of T cells. EGCG will be a promising candidate in anti-tumor therapy.


Subject(s)
Catechin , NF-kappa B , Programmed Cell Death 1 Receptor , T-Lymphocytes , Catechin/analogs & derivatives , Catechin/pharmacology , Animals , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , NF-kappa B/metabolism , Phosphorylation/drug effects , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice , Humans , Apoptosis/drug effects , Cell Line, Tumor , Mice, Inbred C57BL , Female , Cell Nucleus/metabolism , Cell Nucleus/drug effects , Active Transport, Cell Nucleus/drug effects
10.
Bioconjug Chem ; 35(5): 682-692, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38648296

ABSTRACT

The delivery of proteins into the cytosol holds great promise for cell signaling manipulation and the development of precision medicine. However, this potency is challenged by achieving targeted and controlled delivery, specifically within diseased cells. In this study, we introduce a versatile and effective method for the precision delivery of therapeutic proteins to cancer cells by designing polyphenol-assisted biomineralization of zeolite imidazole framework-8 (ZIF-8). We demonstrate that by leveraging the strong noncovalent binding affinity of epigallocatechin gallate (EGCG) with both proteins and ZIF-8, our approach significantly enhances the biomineralization of ZIF-8, which in turn improves the efficiency of protein encapsulation and intracellular delivery. Moreover, the incorporation of EGCG within ZIF-8 enables controlled degradation of the nanoparticles and the selective release of the encapsulated proteins in cancer cells. This selective release is triggered by the oxidation of EGCG in response to the high levels of reactive oxygen species (ROS) found within cancer cells that destabilize the EGCG/ZIF-8 nanoparticles. We have further demonstrated the ability of EGCG/ZIF-8 to deliver a wide range of proteins into cancer cells, including bacterial virulence protein, to rewire cell signaling and prohibit tumor cell growth in a mouse xenograft model. Our strategy and findings underscore the potential of designing the EGCG/ZIF-8 interface for specific and controlled protein delivery for targeted cancer therapy.


Subject(s)
Catechin , Metal-Organic Frameworks , Nanoparticles , Polyphenols , Humans , Metal-Organic Frameworks/chemistry , Polyphenols/chemistry , Polyphenols/pharmacology , Animals , Nanoparticles/chemistry , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/administration & dosage , Catechin/pharmacology , Mice , Zeolites/chemistry , Biomineralization , Imidazoles/chemistry , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/metabolism , Drug Delivery Systems/methods , Reactive Oxygen Species/metabolism
11.
Food Chem ; 448: 139208, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38608400

ABSTRACT

(-)-Epigallocatechin-3-gallate (EGCG) is remarkably efficacious in inhibiting the browning of red meat. We therefore propose a hypothesis that EGCG forms complexes with myoglobin, thereby stabilizing its structure and thus preventing browning. This study investigated the interaction mechanism between EGCG and myoglobin. EGCG induced static quenching of myoglobin. Noncovalent forces, including hydrogen bonds and van der Waals, primarily governing the interactions between myoglobin and EGCG. The interactions primarily disrupted myoglobin's secondary structure, thus significantly reducing surface hydrophobicity by 53% (P < 0.05). The modification augmented the solubility and thermal stability of myoglobin. The radius of gyration (Rg) value fluctuated between 1.47 and 1.54 nm, and the hydroxyl groups in EGCG formed an average of 2.93 hydrogen bonds with myoglobin. Our findings elucidated the formation of stable myoglobin-EGCG complexes and the myoglobin-EGCG interaction, thus confirming our initial hypothesis.


Subject(s)
Catechin , Catechin/analogs & derivatives , Hydrophobic and Hydrophilic Interactions , Myoglobin , Myoglobin/chemistry , Catechin/chemistry , Hydrogen Bonding , Animals , Protein Binding
12.
BMC Cancer ; 24(1): 486, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632501

ABSTRACT

BACKGROUND: The antiviral drug Nirmatrelvir was found to be a key drug in controlling the progression of pneumonia during the infectious phase of COVID-19. However, there are very few options for effective treatment for cancer patients who have viral pneumonia. Glucocorticoids is one of the effective means to control pneumonia, but there are many adverse events. EGCG is a natural low toxic compound with anti-inflammatory function. Thus, this study was designed to investigate the safety and efficacy of epigallocatechin-3-gallate (EGCG) aerosol to control COVID-19 pneumonia in cancer populations. METHODS: The study was designed as a prospective, single-arm, open-label phase I/II trial at Shandong Cancer Hospital and Institute, between January 5, 2023 to March 31,2023 with viral pneumonia on radiographic signs after confirmed novel coronavirus infection. These patients were treated with EGCG nebulization 10 ml three times daily for at least seven days. EGCG concentrations were increased from 1760-8817umol/L to 4 levels with dose escalation following a standard Phase I design of 3-6 patients per level. Any grade adverse event caused by EGCG was considered a dose-limiting toxicity (DLT). The maximum tolerated dose (MTD) is defined as the highest dose with less than one-third of patients experiencing dose limiting toxicity (DLT) due to EGCG. The primary end points were the toxicity of EGCG and CT findings, and the former was graded by Common Terminology Criteria for Adverse Events (CTCAE) v. 5.0. The secondary end point was the laboratory parameters before and after treatment. RESULT: A total of 60 patients with high risk factors for severe COVID-19 pneumonia (factors such as old age, smoking and combined complications)were included in this phase I-II study. The 54 patients in the final analysis were pathologically confirmed to have tumor burden and completed the whole course of treatment. A patient with bucking at a level of 1760 umol/L and no acute toxicity associated with EGCG has been reported at the second or third dose gradients. At dose escalation to 8817umol/L, Grade 1 adverse events of nausea and stomach discomfort occurred in two patients, which resolved spontaneously within 1 hour. After one week of treatment, CT showed that the incidence of non-progression of pneumonia was 82% (32/39), and the improvement rate of pneumonia was 56.4% (22/39). There was no significant difference in inflammation-related laboratory parameters (white blood cell count, lymphocyte count, IL-6, ferritin, C-reactive protein and lactate dehydrogenase) before and after treatment. CONCLUSION: Aerosol inhalation of EGCG is well tolerated, and preliminary investigation in cancer population suggests that EGCG may be effective in COVID-19-induced pneumonia, which can promote the improvement of patients with moderate pneumonia or prevent them from developing into severe pneumonia. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05758571. Date of registration: 8 February 2023.


Subject(s)
COVID-19 , Catechin/analogs & derivatives , Neoplasms , Pneumonia, Viral , Humans , Oxygen , Prospective Studies , Pneumonia, Viral/epidemiology , Treatment Outcome , Respiratory Aerosols and Droplets
13.
Int J Pharm ; 656: 124095, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38588757

ABSTRACT

Reactive oxygen species (ROS) play a vital role in wound healing process by fighting against invaded bacteria. However, excess ROS at the wound sites lead to oxidative stress that can trigger deleterious effects, causing cell death, tissue damage and chronic inflammation. Therefore, we fabricated a core-shell structured nanomedicine with antibacterial and antioxidant properties via a facile and green strategy. Specifically, Prussian blue (PB) nanozyme was fabricated and followed by coating a layer of epigallocatechin-3-gallate (EGCG)-derived polymer via polyphenolic condensation reaction and self-assembly process, resulting in PB@EGCG. The introduction of PB core endowed EGCG-based polyphenol nanoparticles with excellent NIR-triggered photothermal properties. Besides, owing to multiple enzyme-mimic activity of PB and potent antioxidant capacity of EGCG-derived polymer, PB@EGCG exhibited a remarkable ROS-scavenging ability, mitigated intracellular ROS level and protected cells from oxidative damage. Under NIR irradiation (808 nm, 1.5 W/cm2), PB@EGCG (50 µg/mL) exerted synergistic EGCG-derived polymer-photothermal antibacterial activity against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). In vivo therapeutic effect was evaluated using a S. aureus-infected rat model indicated PB@EGCG with a prominent bactericidal ability could modulate the inflammatory microenvironment and accelerate wound healing. Overall, this dual-functional nanomedicine provides a promising strategy for efficient antibacterial therapy.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Catechin , Catechin/analogs & derivatives , Escherichia coli , Ferrocyanides , Nanoparticles , Polymers , Reactive Oxygen Species , Staphylococcus aureus , Catechin/chemistry , Catechin/pharmacology , Catechin/administration & dosage , Ferrocyanides/chemistry , Animals , Reactive Oxygen Species/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Rats , Polymers/chemistry , Nanoparticles/chemistry , Antioxidants/pharmacology , Antioxidants/administration & dosage , Antioxidants/chemistry , Male , Rats, Sprague-Dawley , Humans , Staphylococcal Infections/drug therapy , Mice , Photothermal Therapy/methods , Oxidative Stress/drug effects
14.
J Agric Food Chem ; 72(15): 8506-8520, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38567990

ABSTRACT

The dysregulation of lipid metabolism poses a significant health threat, necessitating immediate dietary intervention. Our previous research unveiled the prebiotic-like properties of theabrownin. This study aimed to further investigate the theabrownin-gut microbiota interactions and their downstream effects on lipid metabolism using integrated physiological, genomic, metabolomic, and transcriptomic approaches. The results demonstrated that theabrownin significantly ameliorated dyslipidemia, hepatic steatosis, and systemic inflammation induced by a high-fat/high-cholesterol diet (HFD). Moreover, theabrownin significantly improved HFD-induced gut microbiota dysbiosis and induced significant alterations in microbiota-derived metabolites. Additionally, the detailed interplay between theabrownin and gut microbiota was revealed. Analysis of hepatic transcriptome indicated that FoxO and PPAR signaling pathways played pivotal roles in response to theabrownin-gut microbiota interactions, primarily through upregulating hepatic Foxo1, Prkaa1, Pck1, Cdkn1a, Bcl6, Klf2, Ppara, and Pparg, while downregulating Ccnb1, Ccnb2, Fabp3, and Plin1. These findings underscored the critical role of gut-liver axis in theabrownin-mediated improvements in lipid metabolism disorders and supported the potential of theabrownin as an effective prebiotic compound for targeted regulation of metabolic diseases.


Subject(s)
Catechin/analogs & derivatives , Gastrointestinal Microbiome , Microbiota , Animals , Mice , Lipid Metabolism , Prebiotics , Peroxisome Proliferator-Activated Receptors , Liver/metabolism , Diet, High-Fat/adverse effects , Signal Transduction , Mice, Inbred C57BL
15.
J Nutr Sci Vitaminol (Tokyo) ; 70(2): 164-173, 2024.
Article in English | MEDLINE | ID: mdl-38684387

ABSTRACT

Bitterness and astringency are the aversive tastes in mammals. In humans, aversion to bitterness and astringency may be reduced depending on the eating experience. However, the cellular and molecular mechanisms underlying plasticity in preference to bitter and astringent tastants remain unknown. This study aimed to investigate the preference plasticity to bitter and astringent tea polyphenols, including catechins and tannic acids, in the model animal Caenorhabditis elegans. C. elegans showed avoidance behavior against epigallocatechin gallate (EGCG), tannic acid, and theaflavin. However, they displayed diminishing avoidance against EGCG depending on their EGCG-feeding regime at larval stages. Additionally, the behavioral plasticity in avoiding EGCG required the transcription factor DAF-16/FOXO. Isoform-specific deletion mutant analysis and cell-specific rescue analysis revealed that the function of daf-16 isoform b in AIY interneurons is necessary for experience-dependent behavioral plasticity to EGCG.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Catechin , Forkhead Transcription Factors , Interneurons , Animals , Catechin/analogs & derivatives , Catechin/pharmacology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Forkhead Transcription Factors/metabolism , Interneurons/drug effects , Interneurons/metabolism , Avoidance Learning/drug effects , Biflavonoids/pharmacology , Taste/drug effects , Tea/chemistry , Behavior, Animal/drug effects , Larva/drug effects
16.
Biomed Pharmacother ; 174: 116582, 2024 May.
Article in English | MEDLINE | ID: mdl-38642504

ABSTRACT

The aim of this study was to investigate whether the therapeutic effect of theabrownin extracted from Qingzhuan tea (QTB) on metabolic dysfunction-associated steatosis liver disease (MASLD) is related to the regulation of intestinal microbiota and its metabolite short-chain fatty acids (SCFAs). Mice were divided into four groups and received normal diet (ND), high-fat diet (HFD) and HFD+QTB (180, 360 mg/kg) for 8 weeks. The results showed that QTB significantly reduced the body weight of HFD mice, ameliorated liver lipid and dyslipidemia, and increased the level of intestinal SCFAs in HFD mice. The results of 16 S rRNA showed that the relative abundance of Bacteroides, Blautia and Lachnoclostridium and their main metabolites acetate and propionate were significantly increased after QTB intervention. The relative abundance of Colidextribacter, Faecalibaculum and Lactobacillus was significantly reduced. QTB can also significantly up-regulate the expression of ATGL, PPARα, FFAR2 and FFAR3, and inhibit the expression of LXRα, SREBP-1c, FAS and HMGCR genes. This makes it possible to act as a prebiotic to prevent MASLD.


Subject(s)
Catechin/analogs & derivatives , Diet, High-Fat , Gastrointestinal Microbiome , Mice, Inbred C57BL , Tea , Animals , Gastrointestinal Microbiome/drug effects , Diet, High-Fat/adverse effects , Male , Tea/chemistry , Mice , Fatty Acids, Volatile/metabolism , Liver/drug effects , Liver/metabolism , Lipid Metabolism/drug effects , Dyslipidemias/drug therapy , Dyslipidemias/prevention & control , Fatty Liver/prevention & control , Fatty Liver/drug therapy
17.
BMC Complement Med Ther ; 24(1): 147, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580929

ABSTRACT

BACKGROUND: Pneumonia, the acute inflammation of lung tissue, is multi-factorial in etiology. Hence, continuous studies are conducted to determine the mechanisms involved in the progression of the disease and subsequently suggest effective treatment. The present study attempted to evaluate the effects of Epigallocatechin-3-Gallate (EGCG), an herbal antioxidant, on inflammation, oxidative stress, apoptosis, and autophagy in a rat pneumonia model. METHODS: Forty male Wistar rats, 5 months old and 250-290 g were divided into four groups including control, EGCG, experimental pneumonia (i/p LPS injection, 1 mg/kg), and experimental pneumonia treated with EGCG (i/p, 15 mg/kg, 1 h before and 3 h after LPS instillation). Total cell number in the bronchoalveolar lavage fluid, inflammation (TNF-a, Il-6, IL-1ß, and NO), oxidative stress (Nrf2, HO-1, SOD, CAT, GSH, GPX, MDA, and TAC), apoptosis (BCL-2, BAX, CASP-3 and CASP-9), and autophagy (mTOR, LC3, BECN1) were evaluated. RESULTS: The findings demonstrated that EGCG suppresses the LPS-induced activation of inflammatory pathways by a significant reduction of inflammatory markers (p-value < 0.001). In addition, the upregulation of BCL-2 and downregulation of BAX and caspases revealed that EGCG suppressed LPS-induced apoptosis. Furthermore, ECGC suppressed oxidative injury while promoting autophagy in rats with pneumonia (p-value < 0.05). CONCLUSION: The current study revealed that EGCG could suppress inflammation, oxidative stress, apoptosis, and promote autophagy in experimental pneumonia models of rats suggesting promising therapeutical properties of this compound to be used in pneumonia management.


Subject(s)
Catechin/analogs & derivatives , Lipopolysaccharides , Pneumonia , Rats , Male , Animals , Lipopolysaccharides/toxicity , bcl-2-Associated X Protein/metabolism , Rats, Wistar , Oxidative Stress , Inflammation/drug therapy , Inflammation/metabolism , Pneumonia/drug therapy , Apoptosis , Autophagy
18.
PLoS One ; 19(4): e0301904, 2024.
Article in English | MEDLINE | ID: mdl-38662666

ABSTRACT

Our previous research demonstrated that PU.1 regulates expression of the genes involved in inflammation in macrophages. Selective knockdown of PU.1 in macrophages ameliorated LPS-induced acute lung injury (ALI) in bone marrow chimera mice. Inhibitors that block the transcriptional activity of PU.1 in macrophages have the potential to mitigate the pathophysiology of LPS-induced ALI. However, complete inactivation of PU.1 gene disrupts normal myelopoiesis. Although the green tea polyphenol Epigallocatechin gallate (EGCG) has been shown to regulate inflammatory genes in various cell types, it is not known if EGCG alters the transcriptional activity of PU.1 protein. Using Schrodinger Glide docking, we have identified that EGCG binds with PU.1 protein, altering its DNA-binding and self-dimerization activity. In silico analysis shows that EGCG forms Hydrogen bonds with Glutamic Acid 209, Leucine 250 in DNA binding and Lysine 196, Tryptophan 193, and Leucine 182 in the self-dimerization domain of the PU.1 protein. Experimental validation using mouse bone marrow-derived macrophages (BMDM) confirmed that EGCG inhibits both DNA binding by PU.1 and self-dimerization. Importantly, EGCG had no impact on expression of the total PU.1 protein levels but significantly reduced expression of various inflammatory genes and generation of ROS. In summary, we report that EGCG acts as an inhibitor of the PU.1 transcription factor in macrophages.


Subject(s)
Catechin , Catechin/analogs & derivatives , Macrophages , Proto-Oncogene Proteins , Trans-Activators , Catechin/pharmacology , Animals , Trans-Activators/metabolism , Trans-Activators/genetics , Macrophages/metabolism , Macrophages/drug effects , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Protein Binding , DNA/metabolism , Gene Expression Regulation/drug effects , Lipopolysaccharides/pharmacology
19.
Biomed Res Int ; 2024: 1741539, 2024.
Article in English | MEDLINE | ID: mdl-38628498

ABSTRACT

Background: Dental implantation has become a standard procedure with high success rates, relying on achieving osseointegration between the implant surface and surrounding bone tissue. Polyether ether ketone (PEEK) is a promising alternative to traditional dental implant materials like titanium, but its osseointegration capabilities are limited due to its hydrophobic nature and reduced surface roughness. Objective: The aim of the study is to increase the surface roughness and hydrophilicity of PEEK by treating the surface with piranha solution and then coating the surface with epigallocatechin-3-gallate (EGCG) by electrospraying technique. Materials and Methods: The study includes four groups intended to investigate the effect of piranha treatment and EGCG coating: a control group of PEEK discs with no treatment (C), PEEK samples treated with piranha solution (P), a group of PEEK samples coated with EGCG (E), and a group of PEEK samples treated with piranha solution and coated with EGCG (PE). Surface roughness, wettability, and microhardness were assessed through statistical analysis. Results: Piranha treatment increased surface roughness, while EGCG coating moderated it, resulting in an intermediate roughness in the PE group. EGCG significantly improved wettability, as indicated by the reduced contact angle. Microhardness increased by about 20% in EGCG-coated groups compared to noncoated groups. Statistical analysis confirmed significant differences between groups in all tests. Conclusion: This study demonstrates the potential of EGCG coating to enhance the surface properties of PEEK as dental implants. The combined piranha and EGCG modification approach shows promise for improved osseointegration, although further vivo research is necessary. Surface modification techniques hold the key to optimizing biomaterial performance, bridging the gap between laboratory findings and clinical implementation in dental implantology.


Subject(s)
Catechin/analogs & derivatives , Polyethylene Glycols , Polymers , Polymers/chemistry , Polyethylene Glycols/chemistry , Benzophenones , Ketones/pharmacology , Ketones/chemistry , Surface Properties , Ethers , Titanium/chemistry
20.
Int J Biol Macromol ; 267(Pt 2): 131496, 2024 May.
Article in English | MEDLINE | ID: mdl-38626839

ABSTRACT

We aimed to study the potential of epigallocatechin-3-gallate/tyrosol-loaded chitosan/lecithin nanoparticles (EGCG/tyrosol-loaded C/L NPs) in streptozotocin-induced type 2 diabetes mellitus (T2DM) mice. The EGCG/tyrosol-loaded C/L NPs were created using the self-assembly method. Dynamic light scattering, Field Emission Scanning Electron Microscopy, and Fourier transform infrared spectroscopy were utilized to characterize the nanoparticle. Furthermore, in streptozotocin-induced T2DM mice, treatment with EGCG/tyrosol-loaded C/L NPs on fasting blood sugar levels, the expression of PCK1 and G6Pase, and IL-1ß in the liver, liver glutathione content, nanoparticle toxicity on liver cells, and liver reactive oxygen species were measured. Our findings showed that EGCG/tyrosol-loaded C/L NPs had a uniform size distribution, and encapsulation efficiencies of 84 % and 89.1 % for tyrosol and EGCG, respectively. The nanoparticles inhibited PANC-1 cells without affecting normal HFF cells. Furthermore, EGCG/tyrosol-loaded C/L NP treatment reduced fasting blood sugar levels, elevated hepatic glutathione levels, enhanced liver cell viability, and decreased reactive oxygen species levels in diabetic mice. The expression of gluconeogenesis-related genes (PCK1 and G6 Pase) and the inflammatory gene IL-1ß was downregulated by EGCG/tyrosol-loaded C/L NPs. In conclusion, the EGCG/tyrosol-loaded C/L NPs reduced hyperglycemia, oxidative stress, and inflammation in diabetic mice. These findings suggest that EGCG/tyrosol-loaded C/L NPs could be a promising therapeutic option for type 2 diabetes management.


Subject(s)
Catechin , Chitosan , Diabetes Mellitus, Experimental , Hyperglycemia , Liver , Nanoparticles , Animals , Chitosan/chemistry , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Nanoparticles/chemistry , Mice , Liver/drug effects , Liver/metabolism , Liver/pathology , Hyperglycemia/drug therapy , Male , Blood Glucose , Streptozocin , Reactive Oxygen Species/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Humans , Glutathione/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...